MATS254 Stochastic processes (4 cr)
Study level:
Advanced studies
Grading scale:
0-5
Language:
English, Finnish
Responsible organisation:
Department of Mathematics and Statistics
Curriculum periods:
2024-2025, 2025-2026, 2026-2027, 2027-2028
Description
The course gives an introduction into the theory of martingales and some applications. Martingales are one of
the most important classes of stochastic processes. They are widely used in stochastic modelling and in pure mathematics itself. The content of the course is:
the most important classes of stochastic processes. They are widely used in stochastic modelling and in pure mathematics itself. The content of the course is:
- martingales
- Doob's optional stopping theorem
- Doob's martingale convergence theorem
- applications (Branching Processes and Kakutani's Dichotomy Theorem)
Learning outcomes
After completion of the course, the student
- can calculate conditional expectations
- can decide whether a stochastic process is a martingale
- knows the basic conditions under which a martingale converges
- can apply martingales in stochastic modelling
Description of prerequisites
MATA280 Foundations of stochastics
Recommended: Measure theoretic foundation of probability
(MATS260 Probability 1 or MATS112 Measure and Integration Theory 2)
Recommended: Measure theoretic foundation of probability
(MATS260 Probability 1 or MATS112 Measure and Integration Theory 2)
Study materials
Lecture notes: S. Geiss. Stochastic processes in discrete time
Literature
- D. Williams. Probability with martingales, 1991, Cambridge Mathematical Textbooks; ISBN: 978-0521406055
Completion methods
Method 1
Evaluation criteria:
The grade of the course is determined by the points aquired in the exam and in the exercises.
Time of teaching:
Period 2
Select all marked parts
Method 2
Evaluation criteria:
The grade of the course is determined by the points aquired in the exam.
Select all marked parts
Parts of the completion methods
x
Teaching (4 cr)
Type:
Participation in teaching
Grading scale:
0-5
Language:
English
Teaching
10/28–12/20/2024 Lectures
12/13–12/13/2024 Course Exam
1/22–1/22/2025 Course Exam
x
Exam (4 cr)
Type:
Exam
Grading scale:
0-5
Language:
English