# MATA128 Euclidean Plane Geometry (4 cr)

**Study level:**

**Grading scale:**

**Language:**

**Responsible organisation:**

**Curriculum periods:**

## Tweet text

## Description

##### Content

An axiomatic approach to elementary Euclidean plane geometry; ruler-and-compass constructions; the use of mathematical software to illustrate elementary geometry.

##### Completion methods

Homeworks and Course exam.

## Learning outcomes

- knows the basics of the axiomatic geometry
- can prove central results concerning lines, triangles and circles
- can solve problems using theorems of both congruent and similar triangles and inscribed angles
- can do ruler-and-compass constructions and validate the constructions
- has basic control over some geometry-oriented mathematical software (e.g. Geogebra)

## Additional information

28h lectures, 7 exercise sessions

## Description of prerequisites

Lukion matematiikan pitkä oppimäärä tai vastaavat tiedot

## Study materials

Euclid's Elements

Greenberg: Euclidean and non-Euclidean Geometries

Kurittu, Hokkanen, Kahanpää: Geometria (in Finnish)

Väisälä: Geometria (in Finnish).

## Completion methods

### Method 1

**Evaluation criteria:**

**Time of teaching:**

### Method 2

**Evaluation criteria:**

**Parts of the completion methods**

### Teaching (4 cr)

**Type:**

**Grading scale:**

**Evaluation criteria:**

**Language:**

**Study methods:**

28h lectures, 7 exercise sessions

**Study materials:**

Lecture notes (in Finnish)

Hartshorne: Geometry: Euclid and Beyond (Chapters 1 and 2 and Section 20)

Euclid's Elements

Greenberg: Euclidean and non-Euclidean Geometries

Kurittu, Hokkanen, Kahanpää: Geometria (in Finnish)

Väisälä: Geometria (in Finnish).

#### Teaching

##### 3/21–5/28/2023 Lectures

##### 5/17–5/17/2023 Exam

##### 5/25–5/25/2023 Exam

### Exam (4 cr)

**Type:**

**Grading scale:**

**Evaluation criteria:**

**Language:**

**Study methods:**

Final exam

**Study materials:**

Lecture notes (in Finnish)

Hartshorne: Geometry: Euclid and Beyond (Chapters 1 and 2 and Section 20)

Euclid's Elements

Greenberg: Euclidean and non-Euclidean Geometries

Kurittu, Hokkanen, Kahanpää: Geometria (in Finnish)

Väisälä: Geometria (in Finnish).