MATS121 Complex Analysis 1 (5 cr)
Study level:
Advanced studies
Grading scale:
0-5
Language:
English, Finnish
Responsible organisation:
Department of Mathematics and Statistics
Curriculum periods:
2020-2021, 2021-2022, 2022-2023
Description
Algebraic and topological properties of complex numbers. Complex valued functions of one complex variable (polynomials, exponential function, trigonometric functions, logarithm). Complex differentiability, holomorphic (analytic) functions and their basic properties, contour integrals. Cauchy-Riemann equations. Local versions of the Cauchy integral theorem and integral formula. Liouville's theorem, maximum principle, fundamental theorem of algebra. (Freitag and Busam: Complex analysis, chapters 1 and 2)
Learning outcomes
After passing the course successfully the student:
- knows the algebraic and topological properties of complex numbers
- knows basic properties of complex functions
- knows the definition of a holomorphic function and knows their basic properties
- can use (and derive) Cauchy-Riemann equations and knows the connection between differentiability and Cauchy-Riemann equations
- can derive Cauchy integral theorem and integral formula for a disc and can apply them
- can prove the fundamental theorem of algebra
- can apply the theory of complex numbers in different areas of mathematics
Description of prerequisites
Vector analysis 1, Introduction to mathematical analysis 3 and 4.
Study materials
Kilpeläinen: Kompleksianalyysi 1 (luentomonisteet www-sivulla).
Literature
- B.P. Palka: An Introduction to Complex Function Theory; ISBN: 0-387-97427-X
- Eberhard Freitag ja Rolf Busam: Complex analysis, toinen laitos, Universitext, Springer, 2009.
Completion methods
Method 1
Evaluation criteria:
Points from course exam and homework exercises.
Time of teaching:
Period 3
Select all marked parts
Method 2
Evaluation criteria:
Final exam.
Select all marked parts
Parts of the completion methods
x
Teaching (5 cr)
Type:
Participation in teaching
Grading scale:
0-5
Evaluation criteria:
Kurssitenttiin saa lisäpisteitä tehdyistä harjoitustehtävistä opetusohjelmassa ilmoitettavan laskutavan mukaisesti. Opintojakson arvosana määräytyy kurssitentin pistemäärän ja laskuharjoitushyvitysten summan perusteella. Hyväksyttyyn suoritukseen vaaditaan vähintään puolet maksimipistemäärästä.
Language:
Finnish
Study methods:
Lectures 30 h, 8 sets of exercises
Teaching
1/13–3/20/2022 Lectures
3/16–3/16/2022 Exam
4/6–4/6/2022 Exam
x
Exam (5 cr)
Type:
Exam
Grading scale:
0-5
Evaluation criteria:
Hyväksyttyyn suoritukseen vaaditaan vähintään puolet lopputentin maksimipistemäärästä.
Language:
English, Finnish