MATA320 Fourier series (4 cr)
Study level:
Intermediate studies
Grading scale:
0-5
Language:
English, Finnish
Responsible organisation:
Department of Mathematics and Statistics
Curriculum periods:
2020-2021, 2021-2022, 2022-2023
Description
Review of the theory of series; orthogonal function series; trigonometric polynomials; basic properties of Fourier series; on the convergence of Fourier series; use of Fourier series in solving partial differential equations; the discrete Fourier transform.
Learning outcomes
After passing the course the student
- has basic skills in Fourier series
- can form the Fourier series of a given function
- can justify the convergence of a given Fourier series
- has the skills needed for ordinary applications.
Description of prerequisites
Introduction to mathematical analysis 3 and 4.
Study materials
Tom M. Apostol: Mathematical analysis. A modern approach to advanced calculus, Addison Wesley, ensimmäinen laitos, viides painos 1971.
Ernst Lindelöf: Differentiali- ja integralilasku ja sen sovellutukset III.2. Raja-arvoista ja raja-menetelmistä, Mercatorin kirjapaino, 1940.
Ernst Lindelöf: Differentiali- ja integralilasku ja sen sovellutukset III.2. Raja-arvoista ja raja-menetelmistä, Mercatorin kirjapaino, 1940.
Completion methods
Method 1
Evaluation criteria:
Course exam and exercises
Select all marked parts
Method 2
Evaluation criteria:
Final exam
Select all marked parts
Parts of the completion methods
x
Teaching (4 cr)
Type:
Participation in teaching
Grading scale:
0-5
Language:
Finnish
Teaching
5/23–6/30/2022 Lectures
x
Exam (4 cr)
Type:
Exam
Grading scale:
0-5
Language:
English, Finnish