IHMJ2106 Handling Missing Data (2–3 cr)
Description
Puuttuvat tiedot saattavat olla täysin satunnaisia jolloin ne eivät vaikuta tutkimustulosten yleistettävyyteen. Puuttuva tieto voi olla myös satunnaista jolloin analyysissä on huomioitava puuttuvan tiedon ja mallissa mukana olevien muuttujien välinen yhteys. Jos puuttuva tieto on luonteeltaan täysin satunnaista tai satunnaista voidaan valita analysointi menetelmiä, joilla pystytään hyödyntämään datan käytettävissä oleva informaatio mahdollisimman hyvin. Puuttuva tiedon luonteen ymmärtäminen ja sen analysointi on keskeinen taito oman aineiston oikean analysointi tavan valitsemiseksi.
Puuttuvan tiedon analyysiin IBM SPSS Statistics ohjelma tarjoaa monipuoliset työkalut. Tämä kurssi on tarkoitettu tutkijoille, jotka julkaisevat kvantitatiivisia tutkimuksia ja käyttävät aineiston analysointiin SPSS:ää / Mplussaa. Kurssin seuraaminen edellyttää SPSS:n perusanalyysien hallintaa. Kurssilla käsitellään puuttuvan tiedon käsittelyä Mplus rakenneyhtälömallinnus ohjelmassa.
Learning outcomes
Kurssin jälkeen opiskelija ymmärtää puuttuvan tiedon keskeisen tematiikan, pystyy itsenäisesti SPSS:n ja Mplussan avulla analysoimaan dataa puuttuvan tiedon näkökulmasta välttäen mahdollisuuksien mukaan puuttuvasta tiedosta aiheutuvaa harhaa analyysien tuloksissa ja niiden tulkinnoissa.
Additional information
Suoritustavat: Kurssi pidetään kahden päivän pituisena intensiivikurssina jakautuen päivittäin luentoihin ja harjoituksiin. Ennakkotehtävä: Kirjoita lyhyt kuvaus millaista aineistoa olet työstämässä ja analysoimassa. Lisäksi pohdi seuraavia kysymyksiä: Puuttuuko minun datasta havaintoja ja vaikuttaako puuttuva data analyysien tuloksiin. Kurssin jälkeen opiskelijat kirjoittavat ennakkotehtävän päivityksen: Miten nyt ajattelen ratkaisevani puuttuvan tiedon kysymyksen tutkimuksessani?
Study materials
Craig K. Enders. Applied Missing Data Analysis