TILS2300 Mixed Models and Longitudinal Data Analysis (2–5 cr)
Description
Sisältö
Tämä kurssi on jatkoa kursseille YLM1 ja YLM2. Kurssilla perehdytään menetelmiin, joita voidaan soveltaa tilanteissa, joissa aineisto sisältää korreloituneita havaintoja (klusteroidut havainnot, toistomittaukset, pitkittäistutkimusten aineistot, spatiaalinen data, jne.). Keskeisimpiä menetelmiä ovat sekamallit sekä yleistetyt estimointiyhtälöt (GEE). Kurssilla käydään läpi sekamallien ja yleistettyjen estimointiyhtälöiden perusteoriaa (mallien määrittely, parametrien estimointi, ennustaminen, testaus). Menetelmien soveltamista erilaisiin empiirisiin aineistoihin harjoitellaan R- ja SAS-ohjelmistojen avulla. Aikataulun salliessa tarkastellaan edellä mainittujen menetelmien lisäksi pitkittäisaineistojen analysointia transitiomallien avulla.
Suoritustavat
Harjoitukset, harjoitustyö ja kurssitentti tai kurssin lopputentti.
Suoritustavat ovat tarkemmin opetusohjelmasssa.
Arviointiperusteet
Arviointiin vaikuttavat menestys kurssitentissä ja mahdollisesti aktiivisuus harjoitustehtävien tms. tekemisessä sekä harjoitustyöstä suoriutuminen.
Kurssin lopputentissä hyväksyttyyn suoritukseen vaaditaan yleensä vähintään puolet tentin maksimipisteistä.
Opetusohjelmassa on tarkemmat arviointiperusteet.
Learning outcomes
• tuntee kurssilla esiteltyjen menetelmien perusteorian: osaa määritellä mallit sekä listata mallien oletukset; tuntee keskeisimmät estimointi- ja ennustamistekniikat.
• osaa valita empiiriseen aineistoon sopivan mallin kovarianssirakenteineen sekä sovittaa mallin R-ohjelmistolla; osaa tarkastella kriittisesti valitsemaansa mallia.
• osaa tehdä aineistoon liittyviä johtopäätöksiä tilastollisen analyysin perusteella sekä raportoida tulokset tekemästään analyysistä.
Lisäksi tilastotieteen opintosuunnan opiskelijoilla hallitsee käsiteltyihin menetelmiin liittyvän tilastotieteen teorian.
Additional information
Tilastotieteen opintosuunnan opiskelijoilla kurssin laajuus on 4-5 op
Muilla opiskelijoille luentoja on vähemmän ja kurssin laajuus on 2 op.
Description of prerequisites
Muilla opiskelijoilla: Datasta malliksi tai tilastomenetelmien peruskurssi, perusvalmiudet R ja SPSS-ohjelmistojen käyttöön.