MATS111 Measure and Integration Theory 1 (5 cr)

Study level:
Advanced studies
Grading scale:
0-5
Language:
Finnish
Responsible organisation:
Department of Mathematics and Statistics
Curriculum periods:
2017-2018, 2018-2019, 2019-2020

Description

Sisältö

Lebesguen mitta ja mitalliset joukot, Lebesguen integraali ja integroituvat funktiot, Lebesguen integraalin yhteys Riemann integraaliin, konvergenssilauseet, absoluuttisesti jatkuvat funktiot.

Suoritustavat

Kurssitentti ja kirjalliset harjoitustehtävät tai lopputentti.

Arviointiperusteet

Opintojakson arvosana määräytyy
a) kurssitentin pistemäärän ja laskuharjoitushyvitysten summan
TAI
b) lopputentin pistemäärän
perusteella.

Hyväksyttyyn suoritukseen vaaditaan vähintään puolet maksimipistemäärästä.

Learning outcomes

Kurssin suorittamisen jälkeen opiskelija
-osaa määritellä Lebesguen mitan ja integraalin
-kykenee tutkimaan funktion integroituvuutta
-osaa perustella ja käyttää Lebesguen mitan perusominaisuuksia.
-tuntee mitallisen joukon ja funktion käsitteet, mitalisten joukkojen ja funktioiden struktuurit, sekä osaa käyttää niitä.
-tuntee ja osaa todistaa tärkeimmät konvergenssilauseet sekä osaa soveltaaa niitä.
-hallitsee perusmenetelmän integraalien (ja mittojen) ominaisuuksien tutkimiseksi. (???)
-osaa perustellen esittää Riemannin ja Lebesguen integraalien yhteyden sekä erot.

Description of prerequisites

Johdatus matemaattiseen analyysiin 3, Vektoricalculus 2, Vektorianalyysi 1

Study materials

Kilpeläinen: Mitta- ja integraaliteoria (luentomoniste)

Literature

  • Avner Friedman: Foundations of Modern Analysis.
  • Elias M. Stein & Rami Shakarchi: Real Analysis.
  • Andrew M. Bruckner, Judith B. Bruckner & Brian S. Thomson: Real Analysis, 2008, www.classicalrealanalysis.com

Completion methods

Method 1

Select all marked parts

Method 2

Select all marked parts
Parts of the completion methods
x
Unpublished assessment item
x
Unpublished assessment item